The GPars Quick Reference

The Whole GPars Team <gpars-developers@googlegroups.com>

Version 1.2.1, 2015-12-04

Table of Contents

A OT . . e e e e e e 2
(0 o< 0 £ P 2
=0y 7o) (= P 2
LS 3 =<P 4
X2 {0) € 0§ PP 6
DynamicDISPatChACIOr e et 6
REACHOT oot e e e 7

) 1 P 8
(70 o< 0 £ 8
LS 3 =<P 8

Communicating Se(. PrOCS ittt e e i e 9
(0 o< 0] £ P 9
L8532 =< 9

Dataflow COMCUITEINCYottt et et ettt e e ettt e e et e e i ennns 11
(00} Qo< 0] £ 11
L8532 =< 12

FOTR/JOIN . .. e 14
(00} Qo< 0] £ 14
L8532 =< 14

FOrKR/JOIn POOl e 17
(00} Qo< 0] £ 17
L8532 =< 17

SOftware Trans. MeIMOTYttt ettt et ettt e e e et e et e e e e e e eennns 20
(00} Qo< 0 £ 20
L8532 =< 20

ThreadPoolo e 22
(00} Qo< 0] £ 22

Noars

Sl

O To download this document as a PDF - click here

./
../quickstart/index.pdf

Actor

Concepts

Actors are independent isolated active objects, which mutually share no data and communicate solely
by messages passing. Avoiding shared mutable state relieves developers from many typical
concurrency problems, like live-locks or race conditions. The body (code) of each actor gets executed
by a random thread from a thread pool and so actors can proceed concurrently and independently.
Since Actors can share a relatively small thread pool, they avoid the threading limitations of the JVM
and don’t require excessive system resources even in cases when your application consists of
thousands of actors.

Actors typically perform three basic types of operations on top of their usual tasks:

* Create a new actor
* Send a message to another actor
* Receive a message
Actors can be created as subclasses of an particular actor class or using a factory method supplying

the actor's body as a closure parameter. There are various ways to send a message, either using the >>
operator or any of the send() , sendAndWait() or sendAndContinua() methods.

Receiving a message can be performed either in a blocking or a non-blocking way, when the physical
thread is returned to the pool until a message is available.

Actors can be orchestrated into various sorts of algorithms, potentially leveraging
architectural patterns similar to those known from the enterprise messaging
systems.

Lifecycle

Creating an Actor Using Factory Methods

Creating an Actor

Actors.actor {
println "actor1 has started"
delegate.metaClass {
afterStop = {List undeliveredMessages ->
println "actor1 has stopped"
}
onInterrupt = {InterruptedException e ->
println "actor1 has been interrupted"
}
onTimeout = {->
println "actor1 has timed out"

}
onException = {Exception e ->

println "actor1 threw an exception"
}

}

println("Running actor1")

Sub-classing the DefaultActor class

Sub-class an Actor

class PooledLifeCycleSampleActor extends DefaultActor {
protected void act() {
println("Running actor2")

}

private void afterStart() {
println "actor2 has started"

}

private void afterStop(List undeliveredMessages) {
println "actor2 has stopped"

}

private void onInterrupt(InterruptedException e) {
println "actor2 has been interrupted"

}

private void onTimeout() {
println "actor2 has timed out"

}

private void onException(Exception e) {
println "actor2 threw an exception”

}

Usage

Creating an Actor Using a Factory Method

An Actor from The Factory
import static groovyx.gpars.actor.Actors.actor

def console = actor {
loop {
react {
println it
}

Sub-classing the DefaultActor class

Sub-class a DefaultActor

class CustomActor extends DefaultActor {
protected void act() {
loop {
react {
println it
}

}

def console=new CustomActor()
console.start()

Sending Messages

Messages for Actors

console.send('Message")

console << 'Message’

console.sendAndContinue 'Message', {reply -> println "I received reply: $reply"}
console.sendAndWait 'Message'

Timeouts

How To Handle Timing Issues
import static groovyx.gpars.actor.Actors.actor

def me = actor {
friend.send('Hi")
react(30.seconds) {msg ->
if (msg == Actor.TIMEOUT) {
friend.send('I see, busy as usual. Never mind.")

stop()
} else {
//continue conversation
}
}
}
me.join()

When a timeout expires when waiting for a message, the Actor.TIMEOUT message arrives instead. Also
the onTimeout() handler is invoked, if present on the actor:

What Happens When an Actor Times-out

import static groovyx.gpars.actor.Actors.actor

def me = actor {

delegate.metaClass.onTimeout = {->
friend.send('I see, busy as usual. Never mind.")
stop()

}

friend.send('Hi")

react(30.seconds) {
// Continue conversation.

}
}

me.join()

Actor Groups

A Group of Actors Is Called What ?

def coreActors = new NonDaemonPGroup(5) //5 non-daemon threads pool
def helperActors = new DefaultPGroup(1) //1 daemon thread pool
def priceCalculator = coreActors.actor {

}

def paymentProcessor = coreActors.actor {

}

def emailNotifier = helperActors.actor {

}

def cleanupActor = helperActors.actor {

}

// Increase size of the core actor group.
coreActors.resize 6

// Shutdown the group's pool once you no longer need the group to release resources.
helperActors.shutdown()

DynamicDispatchActor

Dynamic Dispatch

final Actor actor = new DynamicDispatchActor({

when {String msg -> println 'A String'; reply 'Thanks'}

when {Double msg -> println 'A Double'; reply 'Thanks'}

when {msg -> println 'A something ..."'; reply 'What was that?'}
})

actor.start()

Reactor

When Actors React
import groovyx.gpars.actor.Actors
final def doubler = Actors.reactor {

2 * 9t
}.start()

Agent

Concepts

In the Clojure programing language you can find a concept of Agents, which essentially behave like
actors accepting code (functions) as messages. After reception, the received function is run against the
internal state of the Agent and the return value of the function is considered to be the new internal
state of the Agent. Essentially, agents safe-guard mutable values by allowing only a single agent-
managed thread to make modifications to them. The mutable values are not directly accessible from
outside, but instead requests have to be sent to the agent and the agent guarantees to process the
requests sequentially on behalf of the callers. Agents guarantee sequential execution of all requests
and so consistency of the values.

Usage

Agent Implements a Clojure-like Agent Concept

An Agent Example
import groovyx.gpars.agent.Agent

def jugMembers = new Agent<List>(['Me"']) // Add Me.
jugMembers.send {it.add 'James'} // Add James.

final Thread t1 = Thread.start{
jugMembers {it.add 'Jo'} // Add Jo --- using the implicit call() method to send the
function.

}

final Thread t2 = Thread.start{
jugMembers << {it.add 'Dave'} // Add Dave.
jugMembers << {it.add 'Alice'} // Add Alice.
}

[t1, t2]*.join()

println jugMembers.val

jugMembers.valAsync {println "Current members: §it"}
System.in.read()

jugMembers.stop()

Communicating Seq. Procs

Concepts

The CSP (Communicating Sequential Processes) concurrency concept provides a message-passing
model with synchronous rendezvous-type communication.

It is valued mainly for its high level of determinism and the ability to compose parallel processes.

GPars GroovyCSP wraps the JCSP library from The University of Canterbury and builds on the work of
Jon Kerridge. Please review his works here.

For more information about the CSP concurrency model, checkout the CSP section of the User Guide or
refer to the links below:

e CSP definition : Wiki CSP

* Google’s Go programming language with CSP-style concurrency : Go with Google

Usage

GroovyCSP

Take a look at this example of the Groovy API for CSP-style concurrency :

http://www.cs.kent.ac.uk/projects/ofa/jcsp/
../jk
http://en.wikipedia.org/wiki/Communicating_sequential_processes
http://en.wikipedia.org/wiki/Communicating_sequential_processes
http://golang.org/

How Do You Code This One ?

import groovyx.gpars.csp.PAR

import org.jcsp.lang.CSProcess
import org.jcsp.lang.Channel

import org.jcsp.lang.ChannelOutput
import org.jcsp.lang.0One20neChannel

import groovyx.gpars.csp.plugAndPlay.GPrefix
import groovyx.gpars.csp.plugAndPlay.GPCopy
import groovyx.gpars.csp.plugAndPlay.GPairs
import groovyx.gpars.csp.plugAndPlay.GPrint

class FibonacciV2Process implements CSProcess {
ChannelOutput outChannel

void run() {

One20neChannel a
One20neChannel b
One20neChannel c
One20neChannel d
new PAR([

new GPrefix(prefixValue: @, inChannel: d.in(), outChannel: a.out()),

new GPrefix(prefixValue: 1, inChannel: c.in(), outChannel: d.out()),

new GPCopy(inChannel: a.in(), outChannel®: b.out(), outChannell: outChannel),

new GPairs(inChannel: b.in(), outChannel: c.out()),

D .run()

Channel.createOne20ne()
Channel.createOne20ne()
Channel.createOne20ne()
Channel.createOne20ne()

}
One20neChannel N2P = Channel.createOne20ne()
new PAR([
new FibonacciV2Process(outChannel: N2P.out()),

new GPrint(inChannel: N2P.in(), heading: "Fibonacci Numbers")

1) .run()

10

Dataflow Concurrency

Concepts

Dataflow Concurrency offers an alternative concurrency model, which is inherently safe and robust.
It puts an emphasis on the data and their flow though your processes instead of the actual processes
that manipulate the data. Dataflow algorithms relieve developers from dealing with live-locks, race-
conditions and make dead-locks deterministic and thus 100% reproducible. If you don’t get dead-locks
in tests you won’t get them in production.

Dataflow Variable

A single-assignment multi-read variable offering a thread-safe data-exchange among threads.

Dataflows Class

A virtual infinite map of Dataflow Variables with on-demand creation policy.

Dataflow Stream

A thread-safe unbound deterministic blocking stream with a Dataflow Variable-compatible interface.

Dataflow Queue

A thread-safe unbound blocking queue with a Dataflow Variable-compatible interface.

Dataflow Task

A lightweight thread of execution, which gets assigned a physical thread from a thread pool to execute
the body of the task. Tasks should typically exchange data using *Dataflow Variables* and *Streams*.

Dataflow Operator

A cornerstone of a more thorough dataflow concurrency algorithm. Such algorithms typically define a
number of operators and connect them with channels, represented by Dataflow Streams, Queues or
Variables.

Each operator specifies its input and output channels to communicate with other operators.
Repeatedly, whenever all input channels of a particular operator contain data, the operator’s body is
executed and the produced output is sent into the output channels.

11

Usage

Dataflow Variables

A Sample

import static groovyx.gpars.dataflow.Dataflow.task

final def x = new DataflowVariable()
final def y = new DataflowVariable()
final def z = new DataflowVariable()
task{

z << x.val + y.val
println "Result: ${z.val}"
}

task{
X << 10

}

task{
y << 5

}

Dataflows

A Sample

import static groovyx.gpars.dataflow.Dataflow.task
final def df = new Dataflows()

task{
df.z = df.x + df.y
println "Result: ${df.z}"

}
task{

df.x = 10
}
task{

df.y = 5
}

12

Dataflow Queues
A Sample
import static groovyx.gpars.dataflow.Dataflow.task
def words = ['Groovy', 'fantastic', 'concurrency', 'fun', 'enjoy', 'safe', 'GPars',
data', 'flow']
final def buffer = new DataflowQueue()
task{

for (word in words) {
buffer << word.toUpperCase() // Add to the buffer.

}
}

task{
while(true) println buffer.val // Read from the buffer in a loop.

}

Bind Handlers

A Sample

def a = new DataflowVariable()
a >> {println "The variable has just been bound to $it"}

a.whenBound{println "Just to confirm that the variable has been really set to $it"}

Dataflow Operators

A Sample
operator(inputs: [a, b, c], outputs: [d]) {x, y, z ->

bindOutput 0, x +y + z

13

Fork/Join

Concepts

Fork/Join, or Divide and Conquer, is a very powerful abstraction to solve hierarchical problems. When
talking about hierarchical problems, think about quick sort, merge sort, file system or general tree
navigation and such.

* Fork / Join algorithms essentially split a problem at hands into several smaller sub-problems and
recursively apply the same algorithm to each of the sub-problems.

* Once the sub-problem is small enough, it is solved directly.

* The solutions of all sub-problems are combined to solve their parent problem, which in turn helps
solve its own parent problem.

Usage

Using the Fork-Join Builder

Q Feel free to experiment with the number of fork/join threads in the pool

14

A Sample
withPool(1){pool ->
println """Number of files: ${

runForkJoin(new File("./src")) {file ->
long count = 0

file.eachFile {
if (it.isDirectory()) {
println "Forking a child task for §it"
// Fork a child task.
forkOffChild(it)
} else {
count++
}
}

// Use results of children tasks to calculate and store own result.
return count + (childrenResults.sum(@))

}
}ll nn

Extending the AbstractForkJoinWorker class

15

A Sample

public final class FileCounter extends AbstractForkJoinWorker<Long> {
private final File file;

def FileCounter(final File file) {
this.file = file
}

protected void compute() {
long count = 0;
file.eachFile{
if (it.isDirectory()) {
println "Forking a thread for $it"
// Fork a child task.
forkOffChild(new FileCounter(it))

}

else {
count++

}

}

// Use results of children tasks to calculate and store own result.
setResult(count + ((childrenResults)?.sum() ?: 0))

}

withPool(1){pool -> // Feel free to experiment with the number of fork/join threads in
the pool.
println "Number of files: ${orchestrate(new FileCounter(new File("..")))}"

}

16

Fork/Join Pool

Concepts

Dealing with data frequently involves manipulating collections. Lists, arrays, sets, maps, iterators,
strings and lot of other data types can be viewed as collections of items. The common pattern to
process such collections is to take elements sequentially, one-by-one, and make an action for each of
the items in row.

Take, for example, the min() function, which is supposed to return the smallest element of a collection.
When you call the min() method on a collection of numbers, the caller thread will create an
accumulator or so-far-the-smallest-value initialized to the minimum value of the given type, let say to
zero. And then the thread will iterate through the elements of the collection and compare them with
the value in the accumulator. Once all elements have been processed, the minimum value is stored in
the accumulator.

o This algorithm effectively wastes 75% of the computing power of the chip

This algorithm, however simple, is totally wrong on multi-core hardware. Running the min() function
on a dual-core chip can leverage at most 50% of the computing power of the chip. On a quad-core it
would be only 25%. Correct, this algorithm effectively wastes 75% of the computing power of the chip.

Tree-like Structures Should Be Used Here

Tree-like structures proved to be more appropriate for parallel processing. The min() function in our
example doesn’t need to iterate through all the elements in row and compare their values with the
accumulator. What it can do, instead, is relying on the multi-core nature of your hardware.

A parallel_min() function could, for example, compare pairs (or tuples of certain size) of neighboring
values in the collection and promote the smallest value from the tuple into a next round of
comparison.

Searching for minimum in different tuples can safely happen in parallel and so tuples in the same
round can be processed by different cores at the same time without races or contention among
threads.

Usage

Parallel Collection Processing

The following methods are currently supported on all objects in Groovy:

17

* eachParallel()

* eachWithIndexParallel()
e collectParallel()

» findAllParallel()
+ findParallel()

» everyParallel()

» anyParallel()

» grepParallel()

* groupByParallel()
« foldParallel()

e minParallel()

* maxParallel()

« sumParallel()

Summarize Numbers Concurrently with This Sample

ForkJoinPool.withPool{
final AtomicInteger result = new AtomicInteger(0)
[1, 2, 3, 4, 5].eachParallel{result.addAndGet(it)}
assert 15 == result

}

// Multiply numbers asynchronously.

ForkJoinPool.withPool{
final List result = [1, 2, 3, 4, 5].collectParallel{it * 2}
assert ([2, 4, 6, 8, 10].equals(result))

Meta-class Enhancer

A Sample
import groovyx.gpars.ParallelEnhancer
def 1list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
ParallelEnhancer.enhanceInstance(list)

println list.collectParallel{it * 2 }

18

Transparently Parallel Collections

This selectImportantNames() method Processes the Name Collections Concurrently.

ForkJoinPool.withPool{

assert ['ALICE', "JASON'] == selectImportantNames(['Joe', 'Alice', 'Dave', 'Jason']
.makeConcurrent())

}

/**
* A function implemented using standard sequential collect() and findAl1l() methods.
*/
def selectImportantNames(names) {
names.collect{it.toUpperCase()}.findAll{it.size() > 4}
}

Map/Reduce

Available methods:

* map()

* reduce()
« filter()

* size()

e sum()

* min()

* max()
The collection property will return all elements wrapped in a Groovy collection instance.

A Sample

println 'Number of occurrences of the word GROOVY today: '
.map{it.toURL().text.toUpperCase()}
.filter{it.contains('GROOVY")}
.map{it.split()}
.map{it.findA11{word -> word.contains 'GROOVY'}.size()}
.sum()

+ urls.parallel

S

C

Software Transactional Memory or STM, gives developers transactional semantics for accessing in-
memory data. When multiple threads share data in memory, by marking blocks of code as
transactional (atomic) the developer delegates the responsibility for data consistency to the Stm

oftware Trans. Memory

oncepts

engine. GPars leverages the Multiverse STM engine.

Atomic Closures

GPars allows developers to structure their concurrent code into atomic blocks (closures), which are
then performed as single units, preserving the transactional ACI (Atomicity, Consistency, Isolation)

attributes.

Usage

Running a Piece of Code Atomically

An Atomic Sample

20

import groovyx.gpars.stm.GParsStm
import org.multiverse.api.references.TxnInteger

import static org.multiverse.api.StmUtils.newTxnInteger

public class Account {
private final TxnInteger amount = newTxnInteger(0);

public void transfer(final int a) {
GParsStm.atomic {
amount.increment(a);
}
}

public int getCurrentAmount() {
GParsStm.atomicWithInt {
amount.get();

}

https://github.com/pveentjer/Multiverse

Customizing the Transactional Properties

A Sample

import groovyx.gpars.stm.GParsStm
import org.multiverse.api.AtomicBlock
import org.multiverse.api.PropagationLevel

final TxnExecutor block = GParsStm.createTxnExecutor(maxRetries: 3000, familyName:
"Custom', PropagationLevel: PropagationLevel.Requires, interruptible: false)

assert GParsStm.atomicWithBoolean(block) {
true

}

21

ThreadPool

Concepts

On multi-core systems, you can benefit from having some tasks run asynchronously in the
background, and so off-load your main thread of execution. The ThreadPool class allows you to easily
start tasks in the background to be performed asynchronously and collect the results later.

Usage

Use of ThreadPool - the Java Executors' Based Concurrent Collection
Processor

Closures Enhancements

A Sample

GParsExecutorsPool.withPool() {
Closure longlastingCalculation = {calculate()}

// Create a new closure, which starts the original closure on a thread pool.
Closure fastCalculation = longlastingCalculation.async()

// Returns almost immediately.
Future result=fastCalculation()

// Do stuff while calculation performs...
println result.get()

Another Sample

GParsExecutorsPool.withPool() {
/**
* The callAsync() method is an asynchronous variant of the default call() method
* to invoke a closure. It will return a Future for the result value.
*/
assert 6 == {it * 2}.call(3).qget()
assert 6 == {it * 2}.callAsync(3).get()

22

Executor Service Enhancements

A Sample

GParsExecutorsPool.withPool {ExecutorService executorService ->
executorService << {println 'Inside parallel task'}

}

Asynchronous Function Processing

A Sample
GParsExecutorsPool.withPool {

// Waits for results.
assert [10, 20] == AsyncInvokerUtil.doInParallel({calculateA()}, {calculateB()})

// Returns a Future and doesn't wait for results to be calculated.

assert [10, 20] == AsyncInvokerUtil.executeAsync({calculateA()}, {calculateB()})*.

get()
}

23

	The GPars Quick Reference
	Table of Contents
	Actor
	Concepts
	Lifecycle
	Usage
	Actor Groups
	DynamicDispatchActor
	Reactor

	Agent
	Concepts
	Usage

	Communicating Seq. Procs
	Concepts
	Usage

	Dataflow Concurrency
	Concepts
	Usage

	Fork/Join
	Concepts
	Usage

	Fork/Join Pool
	Concepts
	Usage

	Software Trans. Memory
	Concepts
	Usage

	ThreadPool
	Concepts
	Usage

